Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

An optical spectroscopic and polarimetric study of the microquasar binary system SS 433

Picchi, P, Shore, SN, Harvey, EJ and Berdyugin, A (2020) An optical spectroscopic and polarimetric study of the microquasar binary system SS 433. Astronomy and Astrophysics, 640. ISSN 0004-6361

[img]
Preview
Text
2007.09615v3.pdf - Accepted Version

Download (1MB) | Preview

Abstract

We present a study of the mass transfer and wind outflows of SS433, focusing on the so-called stationary lines based on archival high and low resolution optical spectra, and new optical multifilter polarimetry and low resolution optical spectra spanning an interval of a decade and a broad range of precessional and orbital phases. We derive $\text{E(B-V)}=0.86\pm0.10$ and revised UV and U band polarizations and polarization angles that yield the same position angle as the optical. The polarization wavelength dependence is consistent with optical-dominating electron scattering with a Rayleigh component in U and the UV filters; no polarization changes were observed during a flare event. Using profile orbital and precessional modulation of multiple lines we derive properties for the accretion disk, present evidence for a strong disk wind, determine its velocity structure, and demonstrate its variability on timescales unrelated to the orbit. We derive a mass ratio $q=0.37\pm0.04$, and masses $\text{M}_X=4.2\pm0.4\ \text{M}_\odot$, $\text{M}_A=11.3\pm 0.6\ \text{M}_\odot$, and show that the A star fills its Roche surface. The O I 7772 \r{A} and 8446 \r{A} lines show different but related orbital modulation and no evidence for a circumbinary disk component. Instead, the spectral line profile variability can be understood with an ionization stratified outflow predicted by thermal wind modeling, which also accounts for an extended equatorial structure detected at long wavelength.

Item Type: Article
Uncontrolled Keywords: 0201 Astronomical and Space Sciences
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: EDP Sciences
Related URLs:
Date Deposited: 12 Aug 2020 12:42
Last Modified: 04 Sep 2021 06:49
DOI or ID number: 10.1051/0004-6361/202037960
URI: https://researchonline.ljmu.ac.uk/id/eprint/13490
View Item View Item