Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Fragmentation and kinematics in high-mass star formation: CORE-extension targeting two very young high-mass star-forming regions

Beuther, H, Gieser, C, Suri, S, Linz, H, Klaassen, P, Semenov, D, Winters, JM, Henning, T, Soler, JD, Urquhart, JS, Syed, J, Feng, S, Moeller, T, Beltran, MT, Sanchez-Monge, A, Longmore, SN, Peters, T, Ballesteros-Paredes, J, Schilke, P, Moscadelli, L , Palau, A, Cesaroni, R, Lumsden, S, Pudritz, R, Wyrowski, F, Kuiper, R and Ahmadi, A (2021) Fragmentation and kinematics in high-mass star formation: CORE-extension targeting two very young high-mass star-forming regions. Astronomy and Astrophysics, 649. ISSN 0004-6361

Fragmentation and kinematics in high-mass star formation CORE-extension targeting two very young high-mass star-forming regions106.pdf - Published Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview


Context: The formation of high-mass star-forming regions from their parental gas cloud and the subsequent fragmentation processes lie at the heart of star formation research. Aims: We aim to study the dynamical and fragmentation properties at very early evolutionary stages of high-mass star formation. Methods: Employing the NOrthern Extended Millimeter Array (NOEMA) and the IRAM 30m telescope, we observed two young high-mass star-forming regions, ISOSS22478 and ISOSS23053, in the 1.3mm continuum and spectral line emission at a high angular resolution (~0.8''). Results: We resolved 29 cores that are mostly located along filament-like structures. Depending on the temperature assumption, these cores follow a mass-size relation of approximately M~r^2.0, corresponding to constant mean column densities. However, with different temperature assumptions, a steeper mass-size relation up to M~r^3.0, which would be more likely to correspond to constant mean volume densities, cannot be ruled out. The correlation of the core masses with their nearest neighbor separations is consistent with thermal Jeans fragmentation. We found hardly any core separations at the spatial resolution limit, indicating that the data resolve the large-scale fragmentation well. Although the kinematics of the two regions appear very different at first sight - multiple velocity components along filaments in ISOSS22478 versus a steep velocity gradient of more than 50km/s/pc in ISOSS23053 - the findings can be explained within the framework of a dynamical cloud collapse scenario. Conclusions: While our data are consistent with a dynamical cloud collapse scenario and subsequent thermal Jeans fragmentation, the importance of additional environmental properties, such as the magnetization of the gas or external shocks triggering converging gas flows, is nonetheless not as well constrained and would require future investigation.

Item Type: Article
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: EDP Sciences
Related URLs:
Date Deposited: 12 Apr 2021 11:56
Last Modified: 04 Sep 2021 05:37
DOI or ID number: 10.1051/0004-6361/202040106
URI: https://researchonline.ljmu.ac.uk/id/eprint/14780
View Item View Item