Fudamoto, Y, Oesch, PA, Schouws, S, Stefanon, M, Smit, R, Bouwens, RJ, Bowler, RAA, Endsley, R, Gonzalez, V, Inami, H, Labbe, I, Stark, D, Aravena, M, Barrufet, L, da Cunha, E, Dayal, P, Ferrara, A, Graziani, L, Hodge, J, Hutter, A , Li, Y, De Looze, I, Nanayakkara, T, Pallottini, A, Riechers, D, Schneider, R, Ucci, G, van der Werf, P and White, C (2021) Normal, dust-obscured galaxies in the epoch of reionization. Nature, 597 (7877). pp. 489-492. ISSN 0028-0836
|
Text
Fudamoto2021.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial. Download (2MB) | Preview |
Abstract
Over the past decades, rest-frame ultraviolet (UV) observations have provided large samples of UV luminous galaxies at redshift (z) greater than 6 (refs. 1-3), during the so-called epoch of reionization. While a few of these UV-identified galaxies revealed substantial dust reservoirs4-7, very heavily dust-obscured sources at these early times have remained elusive. They are limited to a rare population of extreme starburst galaxies8-12 and companions of rare quasars13,14. These studies conclude that the contribution of dust-obscured galaxies to the cosmic star formation rate density at z > 6 is sub-dominant. Recent ALMA and Spitzer observations have identified a more abundant, less extreme population of obscured galaxies at z = 3-6 (refs. 15,16). However, this population has not been confirmed in the reionization epoch so far. Here, we report the discovery of two dust-obscured star-forming galaxies at z = 6.6813 ± 0.0005 and z = 7.3521 ± 0.0005. These objects are not detected in existing rest-frame UV data and were discovered only through their far-infrared [C II] lines and dust continuum emission as companions to typical UV-luminous galaxies at the same redshift. The two galaxies exhibit lower infrared luminosities and star-formation rates than extreme starbursts, in line with typical star-forming galaxies at z ≈ 7. This population of heavily dust-obscured galaxies appears to contribute 10-25% to the z > 6 cosmic star formation rate density.
Item Type: | Article |
---|---|
Subjects: | Q Science > QB Astronomy Q Science > QC Physics |
Divisions: | Astrophysics Research Institute |
Publisher: | Nature Publishing Group |
Related URLs: | |
Date Deposited: | 01 Oct 2021 11:29 |
Last Modified: | 22 Mar 2022 00:50 |
DOI or ID number: | 10.1038/s41586-021-03846-z |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/15591 |
View Item |