Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Globular Cluster Mass Loss in the Context of Multiple Populations

Bastian, N and Lardo, C (2015) Globular Cluster Mass Loss in the Context of Multiple Populations. Monthly Notices of the Royal Astronomical Society, 453 (1). pp. 357-364. ISSN 0035-8711

1507.05634v1.pdf - Accepted Version

Download (231kB) | Preview


Many scenarios for the origin of the chemical anomalies observed in globular clusters (GCs; i.e., multiple populations) require that GCs were much more massive at birth, up to $10-100\times$, than they are presently. This is invoked in order to have enough material processed through first generation stars in order to form the observed numbers of enriched stars (inferred to be second generation stars in these models). If such mass loss was due to tidal stripping, gas expulsion, or tidal interaction with the birth environment, there should be clear correlations between the fraction of enriched stars and other cluster properties, whereas the observations show a remarkably uniform enriched fraction of $0.68\pm0.07$ (from 33 observed GCs). If interpreted in the heavy mass loss paradigm, this means that all GCs lost the same fraction of their initial mass (between $95-98$\%), regardless of their mass, metallicity, location at birth or subsequent migration, or epoch of formation. This is incompatible with predictions, hence we suggest that GCs were not significantly more massive at birth, and that the fraction of enriched to primordial stars observed in clusters today likely reflects their initial value. If true, this would rule out self-enrichment through nucleosynthesis as a viable solution to the multiple population phenomenon.

Item Type: Article
Additional Information: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record MNRAS (October 11, 2015) 453 (1): 357-364 is available online at: http://dx.doi.org/10.1093/mnras/stv1661
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA
Subjects: Q Science > QB Astronomy
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 02 Mar 2016 14:47
Last Modified: 23 May 2022 14:44
DOI or ID number: 10.1093/mnras/stv1661
URI: https://researchonline.ljmu.ac.uk/id/eprint/1761
View Item View Item