Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Trialkylammonium salt degradation: implications for methylation and cross-coupling

Washington, JB, Assante, M, Yan, C, McKinney, D, Juba, V, Leach, AG, Baillie, SE and Reid, M (2021) Trialkylammonium salt degradation: implications for methylation and cross-coupling. Chemical Science, 12 (20). pp. 6949-6963. ISSN 2041-6520

Trialkylammonium salt degradation implications for methylation and cross-coupling.pdf - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
Open Access URL: https://doi.org/10.1039/D1SC00757B (Published version)


Trialkylammonium (most notably N,N,N-trimethylanilinium) salts are known to display dual reactivity through both the aryl group and the N-methyl groups. These salts have thus been widely applied in cross-coupling, aryl etherification, fluorine radiolabelling, phase-transfer catalysis, supramolecular recognition, polymer design, and (more recently) methylation. However, their application as electrophilic methylating reagents remains somewhat underexplored, and an understanding of their arylation versus methylation reactivities is lacking. This study presents a mechanistic degradation analysis of N,N,N-trimethylanilinium salts and highlights the implications for synthetic applications of this important class of salts. Kinetic degradation studies, in both solid and solution phases, have delivered insights into the physical and chemical parameters affecting anilinium salt stability. 1H NMR kinetic analysis of salt degradation has evidenced thermal degradation to methyl iodide and the parent aniline, consistent with a closed-shell SN2-centred degradative pathway, and methyl iodide being the key reactive species in applied methylation procedures. Furthermore, the effect of halide and non-nucleophilic counterions on salt degradation has been investigated, along with deuterium isotope and solvent effects. New mechanistic insights have enabled the investigation of the use of trimethylanilinium salts in O-methylation and in improved cross-coupling strategies. Finally, detailed computational studies have helped highlight limitations in the current state-of-the-art of solvation modelling of reaction in which the bulk medium undergoes experimentally observable changes over the reaction timecourse.

Item Type: Article
Uncontrolled Keywords: Chemistry; Chemistry, Multidisciplinary; Physical Sciences; Science & Technology; Science & Technology; Physical Sciences; Chemistry, Multidisciplinary; Chemistry; 03 Chemical Sciences
Subjects: Q Science > QD Chemistry
R Medicine > RM Therapeutics. Pharmacology
Divisions: Pharmacy & Biomolecular Sciences
Publisher: The Royal Society of Chemistry
SWORD Depositor: A Symplectic
Date Deposited: 08 Feb 2023 12:49
Last Modified: 08 Feb 2023 13:00
DOI or ID number: 10.1039/d1sc00757b
URI: https://researchonline.ljmu.ac.uk/id/eprint/18831
View Item View Item