Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The effect of baryons on the inner density profiles of rich clusters

Schaller, M, Frenk, CS, Bower, RG, Theuns, T, Trayford, J, Crain, RA, Furlong, M, Schaye, J, Vecchia, CD and McCarthy, IG (2015) The effect of baryons on the inner density profiles of rich clusters. Monthly Notices of the Royal Astronomical Society, 452 (1). pp. 343-355. ISSN 0035-8711

WarningThere is a more recent version of this item available.
[img]
Preview
Text
MNRAS-2015-Schaller-343-55.pdf - Published Version

Download (1MB) | Preview

Abstract

We use the "Evolution and assembly of galaxies and their environments" (EAGLE) cosmological simulation to investigate the effect of baryons on the density profiles of rich galaxy clusters. We focus on EAGLE clusters with $M_{200}>10^{14}~M_\odot$ of which we have six examples. The central brightest cluster galaxies (BCGs) in the simulation have steep stellar density profiles, $\rho_*(r) \propto r^{-3}$. Stars dominate the mass density for $r<10~\rm{kpc}$, and, as a result, the total mass density profiles are steeper than the Navarro-Frenk-White (NFW) profile, in remarkable agreement with observations. The dark matter halo itself closely follows the NFW form at all resolved radii ($r\gtrsim3.0~\rm{kpc}$). The EAGLE BCGs have similar surface brightness and line-of-sight velocity dispersion profiles as the BCGs in the sample of Newman et al., which have the most detailed measurements currently available. After subtracting the contribution of the stars to the central density, Newman et al. infer significantly shallower slopes than the NFW value, in contradiction with the EAGLE results. We discuss possible reasons for this discrepancy, and conclude that an inconsistency between the kinematical model adopted by Newman et al. for their BCGs, which assumes isotropic stellar orbits, and the kinematical structure of the EAGLE BCGs, in which the orbital stellar anisotropy varies with radius and tends to be radially biased, could explain at least part of the discrepancy.

Item Type: Article
Additional Information: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record MNRAS (September 01, 2015) 452 (1): 343-355. is available online at: http://dx.doi.org/10.1093/mnras/stv1341
Uncontrolled Keywords: 0201 Astronomical And Space Sciences
Subjects: Q Science > QB Astronomy
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 11 Sep 2015 14:08
Last Modified: 04 Sep 2021 13:59
DOI or ID number: 10.1093/mnras/stv1341
URI: https://researchonline.ljmu.ac.uk/id/eprint/1983

Available Versions of this Item

View Item View Item