Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Constraints on the z ∼ 5 Star-forming Galaxy Luminosity Function From Hubble Space Telescope Imaging of an Unbiased and Complete Sample of Long Gamma-Ray Burst Host Galaxies

Sears, H, Chornock, R, Strader, J, Perley, DA, Blanchard, PK, Margutti, R and Tanvir, NR (2024) Constraints on the z ∼ 5 Star-forming Galaxy Luminosity Function From Hubble Space Telescope Imaging of an Unbiased and Complete Sample of Long Gamma-Ray Burst Host Galaxies. The Astrophysical Journal, 966 (1). ISSN 0004-637X

[img]
Preview
Text
Constraints on the z ∼ 5 Star-forming Galaxy Luminosity Function From Hubble Space Telescope Imaging of an Unbiased and Complete Sample of Long Gamma-Ray Burst Host Galaxies.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with
and mag, which are consistent with results based on z ∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies at z ∼ 4. This study observationally confirms expectations that at z ∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshift z ∼ 5 occurring in galaxies fainter than our detection limit of M1600Å ≈ −18.3 mag.

Item Type: Article
Uncontrolled Keywords: 0201 Astronomical and Space Sciences; 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics; 0306 Physical Chemistry (incl. Structural); Astronomy & Astrophysics
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: American Astronomical Society
SWORD Depositor: A Symplectic
Date Deposited: 16 May 2024 10:36
Last Modified: 16 May 2024 10:36
DOI or ID number: 10.3847/1538-4357/ad2e93
URI: https://researchonline.ljmu.ac.uk/id/eprint/23276
View Item View Item