Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Characteristics of Lightweight Concrete Fabricated with Different Types of Strengthened Lightweight Aggregates

Mahmmod, LMR, Dulaimi, A, Bernardo, LFA and Andrade, JMDA (2024) Characteristics of Lightweight Concrete Fabricated with Different Types of Strengthened Lightweight Aggregates. Journal of Composites Science, 8 (4).

[img]
Preview
Text
Characteristics of Lightweight Concrete Fabricated with Different Types of Strengthened Lightweight Aggregates.pdf - Published Version
Available under License Creative Commons Attribution.

Download (14MB) | Preview

Abstract

The vast majority of different waste building units have negative environmental impacts around the world. Crushed building units can be recycled and utilized in the concrete industry to solve these problems and maintain natural resources. This study investigated the feasibility of employing crushed autoclaved aerated concrete (CAAC) and crushed clay brick (CCB) as a lightweight aggregate (LWA) to fabricate environmentally friendly recycled lightweight concrete (LWC). In addition, a lightweight expanded clay aggregate (LECA) was also used as an LWA, namely to study how the high porosity of an LWA can adversely affect the properties of LWC. Through the experimental program, all types of LWAs were pre-treated and strengthened with two cementitious grouts, and then the performance of the produced LWC was assessed by determining the slump of fresh concrete, the dry density, the unconfined compressive strength, and the splitting tensile strength at ages of 3, 7, 28, and 56 days. The laboratory results revealed that both CCB and CAAC can be reused as full substitutions for normal-weight coarse aggregate to manufacture LWC with appropriate properties. The obtained data show that the properties of an LECA, CCB, and CAAC were improved, and the porous structure can be strengthened by pre-treatment and coating with grouts. In the same way, the mechanical performance of produced LWC is also enhanced.

Item Type: Article
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Civil Engineering & Built Environment
Publisher: MDPI
SWORD Depositor: A Symplectic
Date Deposited: 31 Jul 2024 08:56
Last Modified: 31 Jul 2024 08:56
DOI or ID number: 10.3390/jcs8040144
URI: https://researchonline.ljmu.ac.uk/id/eprint/23840
View Item View Item