Neafsey, DE, Waterhouse, RM, Abai, MR, Aganezov, SS, Alekseyev, MA, Allen, JE, Amon, J, Arca, B, Arensburger, P, Artemov, G, Assour, LA, Basseri, H, Berlin, A, Birren, BW, Blandin, SA, Brockman, AI, Burkot, TR, Burt, A, Chan, CS, Chauve, C , Chiu, JC, Christensen, M, Costantini, C, Davidson, VLM, Deligianni, E, Dottorini, T, Dritsou, V, Gabriel, SB, Guelbeogo, WM, Hall, AB, Han, MV, Hlaing, T, Hughes, DST, Jenkins, AM, Jiang, X, Jungreis, I, Kakani, EG, Kamali, M, Kemppainen, P, Kennedy, RC, Kirmitzoglou, IK, Koekemoer, LL, Laban, N, Langridge, N, Lawniczak, MKN, Lirakis, M, Lobo, NF, Lowy, E, MacCallum, RM, Mao, C, Maslen, G, Mbogo, C, McCarthy, J, Michel, K, Mitchell, SN, Moore, W, Murphy, KA, Naumenko, AN, Nolan, T, Novoa, EM, O'Loughlin, S, Oringanje, C, Oshaghi, MA, Pakpour, N, Papathanos, PA, Peery, AN, Povelones, M, Prakash, A, Price, DP, Rajaraman, A, Reimer, LJ, Rinker, DC, Rokas, A, Russell, TL, Sagnon, N, Sharakhova, MV, Shea, T, Simao, FA, Simard, F, Slotman, MA, Somboon, P, Stegniy, V, Struchiner, CJ, Thomas, GWC, Tojo, M, Topalis, P, Tubio, JMC, Unger, MF, Vontas, J, Walton, C, Wilding, CS, Willis, JH, Wu, Y-C, Yan, G, Zdobnov, EM, Zhou, X, Catteruccia, F, Christophides, GK, Collins, FH, Cornman, RS, Crisanti, A, Donnelly, MJ, Emrich, SJ, Fontaine, MC, Gelbart, W, Hahn, MW, Hansen, IA, Howell, PI, Kafatos, FC, Kellis, M, Lawson, D, Louis, C, Luckhart, S, Muskavitch, MAT, Ribeiro, JM, Riehle, MA, Sharakhov, IV, Tu, Z, Zwiebel, LJ and Besansky, NJ (2015) Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. SCIENCE, 347 (6217). pp. 1258522-125822. ISSN 0036-8075
|
Text
Neafsey et al author version.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | MD Multidisciplinary |
Subjects: | Q Science > QL Zoology |
Divisions: | Natural Sciences & Psychology (closed 31 Aug 19) |
Publisher: | American Association for the Advancement of Science |
Related URLs: | |
Date Deposited: | 18 Jan 2016 11:03 |
Last Modified: | 04 Sep 2021 14:45 |
DOI or ID number: | 10.1126/science.1258522 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/303 |
View Item |