Tanaka, I (2015) Effects of Initial Symmetry on the Global Symmetry of One-Dimensional Legal Cellular Automata. Symmetry, 7 (4). ISSN 2073-8994
|
Text
symmetry-07-01768.pdf - Published Version Available under License Creative Commons Attribution. Download (9MB) | Preview |
Abstract
To examine the development of pattern formation from the viewpoint of symmetry, we applied a two-dimensional discrete Walsh analysis to a one-dimensional cellular automata model under two types of regular initial conditions. The amount of symmetropy of cellular automata (CA) models under regular and random initial conditions corresponds to three Wolfram’s classes of CAs, identified as Classes II, III, and IV. Regular initial conditions occur in two groups. One group that makes a broken, regular pattern formation has four types of symmetry, whereas the other group that makes a higher hierarchy pattern formation has only two types. Additionally, both final pattern formations show an increased amount of symmetropy as time passes. Moreover, the final pattern formations are affected by iterations of base rules of CA models of chaos dynamical systems. The growth design formations limit possibilities: the ratio of developing final pattern formations under a regular initial condition decreases in the order of Classes III, II, and IV. This might be related to the difference in degree in reference to surrounding conditions. These findings suggest that calculations of symmetries of the structures of one-dimensional cellular automata models are useful for revealing rules of pattern generation for animal bodies.
Item Type: | Article |
---|---|
Subjects: | Q Science > QH Natural history Q Science > QH Natural history > QH301 Biology |
Divisions: | Natural Sciences & Psychology (closed 31 Aug 19) |
Publisher: | MDPI |
Date Deposited: | 23 Nov 2017 11:00 |
Last Modified: | 04 Sep 2021 03:35 |
DOI or ID number: | 10.3390/sym7041768 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/7589 |
View Item |