Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

Bremer, MN, Phillipps, S, Kelvin, LS, Propris, RD, Kennedy, R, Moffett, AJ, Bamford, S, Davies, LJM, Driver, SP, Häußler, B, Holwerda, B, Hopkins, A, James, PA, Liske, J, Percival, SM and Taylor, EN (2018) Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley. Monthly Notices of the Royal Astronomical Society, 476 (1). ISSN 0035-8711

[img]
Preview
Text
galaxy_and_mass_assembly_morphological_transformation_of_galaxies_across_the_green_valley.pdf - Published Version

Download (1MB) | Preview

Abstract

We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with $10.25<{\rm log}(M_*/M_\odot)<10.75$ and $z<0.2$ classified according to their intrinsic $u^*-r^*$ colour. From single component S\'ersic fits, we find that the stellar mass-sensitive $K-$band profiles of red and green galaxy populations are very similar, while $g-$band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley $\sim 1-2$~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r\^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation.

Item Type: Article
Additional Information: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 22 Jan 2018 09:50
Last Modified: 04 Sep 2021 03:24
URI: https://researchonline.ljmu.ac.uk/id/eprint/7876
View Item View Item