Bacciu, D, Lisboa, PJG, Martín, JD, Stoean, R and Vellido, A Bioinformatics and Medicine in the Era of Deep Learning. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 25-27th April 2018, Bruges, Belgium. (Accepted)
|
Text
1802.09791v1.pdf - Accepted Version Download (189kB) | Preview |
Abstract
Many of the current scientific advances in the life sciences have their origin in the intensive use of data for knowledge discovery. In no area this is so clear as in bioinformatics, led by technological breakthroughs in data acquisition technologies. It has been argued that bioinformatics could quickly become the field of research generating the largest data repositories, beating other data-intensive areas such as high-energy physics or astroinformatics. Over the last decade, deep learning has become a disruptive advance in machine learning, giving new live to the long-standing connectionist paradigm in artificial intelligence. Deep learning methods are ideally suited to large-scale data and, therefore, they should be ideally suited to knowledge discovery in bioinformatics and biomedicine at large. In this brief paper, we review key aspects of the application of deep learning in bioinformatics and medicine, drawing from the themes covered by the contributions to an ESANN 2018 special session devoted to this topic.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Uncontrolled Keywords: | cs.LG; cs.LG; q-bio.QM; stat.ML |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QB Astronomy Q Science > QC Physics |
Divisions: | Astrophysics Research Institute |
Related URLs: | |
Date Deposited: | 28 Mar 2018 10:15 |
Last Modified: | 13 Apr 2022 15:16 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/8262 |
View Item |