Gill, M, Ancau, M, Schlesiger, MI, Neitz, A, Allen, K, De Marco, RJ and Monyer, H (2017) Impaired path integration in mice with disrupted grid cell firing. Nature Neuroscience, 21. pp. 81-91. ISSN 1097-6256
|
Text
Impaired path integration in mice with disrupted grid cell firing.pdf - Published Version Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Path integration (PI) is a highly conserved, self-motion-based navigation strategy. Since the discovery of grid cells in the medial entorhinal cortex, neurophysiological data and computational models have suggested that these neurons serve PI. However, more direct empirical evidence supporting this hypothesis has been missing due to a lack of selective manipulations of grid cell activity and suitable behavioral assessments. Here we report that selective disruption of grid cell activity in mice can be achieved by removing NMDA glutamate receptors from the retro-hippocampal region and that disrupted grid cell firing accounts for impaired PI performance. Notably, the genetic manipulation did not affect the activity of other spatially selective cells in the medial entorhinal cortex and the hippocampus. By directly linking grid cell activity to PI, these results contribute to a better understanding of how grid cells support navigation and spatial memory.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 1109 Neurosciences, 1702 Cognitive Sciences, 1701 Psychology |
Subjects: | R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry |
Divisions: | Biological & Environmental Sciences (from Sep 19) |
Publisher: | Nature Publishing Group |
Date Deposited: | 26 Feb 2020 11:39 |
Last Modified: | 04 Sep 2021 07:50 |
DOI or ID number: | 10.1038/s41593-017-0039-3 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/12321 |
View Item |