Siegenthaler, A, Wangensteen, OS, Benvenuto, C, Campos, J and Mariani, S (2018) DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Molecular Ecology, 28 (2). pp. 232-249. ISSN 0962-1083
|
Text
Siegenthaler_et_al-2018-Molecular_Ecology.pdf - Published Version Available under License Creative Commons Attribution. Download (2MB) | Preview |
Abstract
A thorough understanding of ecological networks relies on comprehensive information on trophic relationships among species. Since unpicking the diet of many organisms is unattainable using traditional morphology‐based approaches, the application of high‐throughput sequencing methods represents a rapid and powerful way forward. Here, we assessed the application of DNA metabarcoding with nearly universal primers for the mitochondrial marker cytochrome c oxidase I in defining the trophic ecology of adult brown shrimp, Crangon crangon, in six European estuaries. The exact trophic role of this abundant and widespread coastal benthic species is somewhat controversial, while information on geographical variation remains scant. Results revealed a highly opportunistic behaviour. Shrimp stomach contents contained hundreds of taxa (>1,000 molecular operational taxonomic units), of which 291 were identified as distinct species, belonging to 35 phyla. Only twenty ascertained species had a mean relative abundance of more than 0.5%. Predominant species included other abundant coastal and estuarine taxa, including the shore crab Carcinus maenas and the amphipod Corophium volutator. Jacobs’ selectivity index estimates based on DNA extracted from both shrimp stomachs and sediment samples were used to assess the shrimp's trophic niche indicating a generalist diet, dominated by crustaceans, polychaetes and fish. Spatial variation in diet composition, at regional and local scales, confirmed the highly flexible nature of this trophic opportunist. Furthermore, the detection of a prevalent, possibly endoparasitic fungus (Purpureocillium lilacinum) in the shrimp's stomach demonstrates the wide range of questions that can be addressed using metabarcoding, towards a more robust reconstruction of ecological networks.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 06 Biological Sciences |
Subjects: | Q Science > QH Natural history > QH301 Biology Q Science > QH Natural history > QH426 Genetics |
Divisions: | Biological & Environmental Sciences (from Sep 19) |
Publisher: | Wiley |
Related URLs: | |
Date Deposited: | 06 Mar 2020 10:00 |
Last Modified: | 04 Sep 2021 07:47 |
DOI or ID number: | 10.1111/mec.14886 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/12406 |
View Item |