Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics

Tavana, M, Shaabani, A, Santos-Arteaga, FJ and Valaei, N (2021) An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environmental Science and Pollution Research, 28. pp. 53953-53982. ISSN 0944-1344

ESPR-GSS-RG.pdf - Accepted Version

Download (1MB) | Preview


Green supply chain management considers the environmental effects of all activities related to the supply chain, from obtaining raw materials to the final delivery of finished goods. Selecting the right supplier is a critical decision in green supply chain management. We propose a fuzzy green supplier selection model for sustainable supply chains in reverse logistics. We define a novel hierarchical fuzzy best-worst method (HFBWM) to determine the importance weights of the green criteria and sub-criteria selected. The fuzzy extension of Shannon’s entropy, a more complex evaluation method, is also used to determine the criteria' weights, providing a reference comparison benchmark. Several hybrid models integrating both weighting techniques with fuzzy versions of complex proportional assessment (COPRAS), multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA), and the technique for order of preference by similarity to ideal solution (TOPSIS) are designed to rank the suppliers based on their ability to recycle in reverse logistics. We aggregate these methods' ranking results through a consensus ranking model and illustrate the capacity of relatively simple methods such as fuzzy COPRAS and fuzzy MOORA to provide robust rankings highly correlated with those delivered by more complex techniques such as fuzzy MULTIMOORA. We also find that the ranking results obtained by these hybrid models are more consistent when HFBWM determines the weights. A case study in the asphalt manufacturing industry is presented to demonstrate the proposed methods' applicability and efficacy.

Item Type: Article
Additional Information: This is a post-peer-review, pre-copyedit version of an article published in Environmental Science and Pollution Research. The final authenticated version is available online at: https://doi.org/10.1007/s11356-021-14302-w
Uncontrolled Keywords: 03 Chemical Sciences, 05 Environmental Sciences, 06 Biological Sciences
Subjects: H Social Sciences > HD Industries. Land use. Labor > HD28 Management. Industrial Management
H Social Sciences > HF Commerce > HF5001 Business > HF5410 Marketing. Distribution of Products
Divisions: Business & Management (from Sep 19)
Publisher: Springer Verlag
Date Deposited: 25 May 2021 08:19
Last Modified: 27 May 2022 00:50
DOI or ID number: 10.1007/s11356-021-14302-w
URI: https://researchonline.ljmu.ac.uk/id/eprint/15061
View Item View Item