Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Characterization Studies on Graphene-Aluminium Nano Composites for Aerospace Launch Vehicle External Fuel Tank Structural Application

Jayaseelan, J, Pazhani, A, Michael, AX, Paulchamy, J, Batako, A and Hosamane Guruswamy, PK (2022) Characterization Studies on Graphene-Aluminium Nano Composites for Aerospace Launch Vehicle External Fuel Tank Structural Application. Materials, 15 (17). ISSN 1996-1944

[img]
Preview
Text
Characterization Studies on Graphene-Aluminium Nano Composites for Aerospace Launch Vehicle External Fuel Tank Structural Application.pdf - Published Version
Available under License Creative Commons Attribution.

Download (11MB) | Preview

Abstract

From the aspect of exploring the alternative lightweight composite material for the aerospace launch vehicle external fuel tank structural components, the current research work studies three different grades of Aluminium alloy reinforced with varying graphene weight percentages that are processed through powder metallurgy (P/M) route. The prepared green compacts composite ingots are subjected to microwave processing (Sintering), hot extruded, and solution treated (T6). The developed Nano-graphene reinforced composite is studied further for the strength–microstructural integrity. The nature of the graphene reinforcement and its chemical existence within the composite is further studied, and it is found that hot extruded solution treated (HEST) composite exhibited low levels of carbide (Al4C3) formations, as composites processed by microwaves. Further, the samples of different grades reinforced with varying graphene percentages are subjected to mechanical characterisation tests such as the tensile test and hardness. It is found that 2 wt% graphene reinforced composites exhibited enhanced yield strength and ultimate tensile strength. Microstructural studies and fracture morphology are studied, and it is proven that composite processed via the microwave method has exhibited good ductile behaviour and promising failure mechanisms at higher load levels.

Item Type: Article
Uncontrolled Keywords: Aluminium-Graphene composites; launch vehicle external fuel tank structure; metallurgical characterisation; nano composites; 03 Chemical Sciences; 09 Engineering
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TL Motor vehicles. Aeronautics. Astronautics
Divisions: Engineering
Publisher: MDPI AG
SWORD Depositor: A Symplectic
Date Deposited: 20 Oct 2022 09:20
Last Modified: 20 Oct 2022 09:30
DOI or ID number: 10.3390/ma15175907
URI: https://researchonline.ljmu.ac.uk/id/eprint/17898
View Item View Item