Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Authentication of Covid-19 Vaccines Using Synchronous Fluorescence Spectroscopy

Assi, S, Abbas, I, Arafat, B, Evans, K and Al-Jumeily, D (2023) Authentication of Covid-19 Vaccines Using Synchronous Fluorescence Spectroscopy. Journal of Fluorescence. ISSN 1053-0509

[img]
Preview
Text
Authentication of Covid-19 Vaccines Using Synchronous Fluorescence Spectroscopy.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
Open Access URL: https://doi.org/10.1007/s10895-022-03136-5 (Published version)

Abstract

The present study demonstrates the potential of synchronous fluorescence spectroscopy and multivariate data analysis for authentication of COVID-19 vaccines from various manufacturers. Synchronous scanning fluorescence spectra were recorded for DNA-based and mRNA-based vaccines obtained through the NHS Central Liverpool Primary Care Network. Fluorescence spectra of DNA and DNA-based vaccines as well as RNA and RNA-based vaccines were identical to one another. The application of principal component analysis (PCA), PCA-Gaussian Mixture Models (PCA-GMM)) and Self-Organising Maps (SOM) methods to the fluorescence spectra of vaccines is discussed. The PCA is applied to extract the characteristic variables of fluorescence spectra by analysing the major attributes. The results indicated that the first three principal components (PCs) can account for 99.5% of the total variance in the data. The PC scores plot showed two distinct clusters corresponding to the DNA-based vaccines and mRNA-based vaccines respectively. PCA-GMM clustering complemented the PCA clusters by further classifying the mRNA-based vaccines and the GMM clusters revealed three mRNA-based vaccines that were not clustered with the other vaccines. SOM complemented both PCA and PCA-GMM and proved effective with multivariate data without the need for dimensions reduction. The findings showed that fluorescence spectroscopy combined with machine learning algorithms (PCA, PCA-GMM and SOM) is a useful technique for vaccination verification and has the benefits of simplicity, speed and reliability.

Item Type: Article
Uncontrolled Keywords: Covid-19; Gaussian mixture models; Principal component analysis; Self organising maps; Synchronous fluorescence; Vaccines; 0301 Analytical Chemistry; 0306 Physical Chemistry (incl. Structural); Chemical Physics
Subjects: Q Science > QD Chemistry
R Medicine > RA Public aspects of medicine > RA0421 Public health. Hygiene. Preventive Medicine
R Medicine > RS Pharmacy and materia medica
Divisions: Pharmacy & Biomolecular Sciences
Publisher: Springer
SWORD Depositor: A Symplectic
Date Deposited: 02 Mar 2023 10:15
Last Modified: 02 Mar 2023 10:15
DOI or ID number: 10.1007/s10895-022-03136-5
URI: https://researchonline.ljmu.ac.uk/id/eprint/18978
View Item View Item