Xu, S, Li, G, Zhang, H, Xie, M, Mendis, T and Du, H (2023) Effect of Block Morphology on Building Energy Consumption of Office Blocks: A Case of Wuhan, China. Buildings, 13 (3). ISSN 2075-5309
|
Text
Effect of Block Morphology on Building Energy Consumption of Office Blocks A Case of Wuhan, China.pdf - Published Version Available under License Creative Commons Attribution. Download (15MB) | Preview |
Abstract
Block morphology refers to critical parameters influencing building energy performance on the block scale. However, analysis of the combined effect of block morphological parameters on building energy consumption with real blocks is lacking. In this paper, the aim is to evaluate the combined effect of office block morphology on building energy consumption in the context of the hot-summer-and-cold-winter zone in China. First, a workflow for the energy assessment of office buildings with the coupled block morphology on the block scale was proposed with evaluation tools. Seventy office blocks in Wuhan were taken as examples and then classified based on building layout typology and building height. Afterwards, the morphological parameters and building energy use intensity (EUI) for different blocks were calculated. Then, the combined effect of block morphology on the buildings’ energy consumption was evaluated and the model on predicting the building energy consumption of office blocks was proposed. Finally, based on the results, low-energy design strategies were projected for office blocks. The results illustrated that the effect of block morphology on building cooling, heating, and lighting is EUI 28.83%, 28.56, and 23.23%, respectively. Building shape factor (BSF), floor area ratio (FAR), average building height of block (BH), and average building depth of block (BD) are effective block morphological parameters. The key morphological parameters which combined affect the building energy consumption of office blocks are BSF and FAR; BSF has 1.24 times the effect on building energy consumption than FAR. The workflow built in this paper can be applied to other cities around the world for promoting sustainable cities.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 1201 Architecture; 1202 Building; 1203 Design Practice and Management |
Subjects: | N Fine Arts > NA Architecture T Technology > TA Engineering (General). Civil engineering (General) T Technology > TH Building construction |
Divisions: | Civil Engineering & Built Environment |
Publisher: | MDPI AG |
SWORD Depositor: | A Symplectic |
Date Deposited: | 16 Mar 2023 10:56 |
Last Modified: | 16 Mar 2023 11:00 |
DOI or ID number: | 10.3390/buildings13030768 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/19113 |
View Item |