Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The biggest splash

Belokurov, V, Sanders, JL, Fattahi, A, Smith, MC, Deason, AJ, Evans, NW and Grand, RJJ (2020) The biggest splash. Monthly Notices of the Royal Astronomical Society, 494 (3). pp. 3880-3898. ISSN 0035-8711

[img]
Preview
Text
The biggest splash.pdf - Published Version

Download (1MB) | Preview

Abstract

Using a large sample of bright nearby stars with accurate Gaia Data Release 2 astrometry and auxiliary spectroscopy we map out the properties of the principle Galactic components such as the ‘thin’ and ‘thick’ discs and the halo. We confirm previous claims that in the Solar neighbourhood, there exists a large population of metal-rich ([Fe/H] > −0.7) stars on highly eccentric orbits. By studying the evolution of elemental abundances, kinematics, and stellar ages in the plane of azimuthal velocity vφ and metallicity [Fe/H], we demonstrate that this metal-rich halo-like component, which we dub the Splash, is linked to the α-rich (or ‘thick’) disc. Splash stars have little to no angular momentum and many are on retrograde orbits. They are predominantly old, but not as old as the stars deposited into the Milky Way (MW) in the last major merger. We argue, in agreement with several recent studies, that the Splash stars may have been born in the MW’s protodisc prior to the massive ancient accretion event which drastically altered their orbits. We cannot, however, rule out other (alternative) formation channels. Taking advantage of the causal connection between the merger and the Splash, we put constraints of the epoch of the last massive accretion event to have finished 9.5 Gyr ago. The link between the local metal-rich and metal-poor retrograde stars is confirmed using a large suite of cutting-edge numerical simulations of the MW’s formation.

Item Type: Article
Uncontrolled Keywords: 0201 Astronomical and Space Sciences; Astronomy & Astrophysics
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press (OUP)
SWORD Depositor: A Symplectic
Date Deposited: 18 Apr 2023 09:13
Last Modified: 18 Apr 2023 09:15
DOI or ID number: 10.1093/MNRAS/STAA876
URI: https://researchonline.ljmu.ac.uk/id/eprint/19310
View Item View Item