Ren, S, Liu, X, Erkens, S, Lin, P and Gao, Y (2022) Multi-component analysis, molecular model construction, and thermodynamics performance prediction on various rejuvenators of aged bitumen. Journal of Molecular Liquids, 360. ISSN 0167-7322
|
Text
Multi-component analysis, molecular model construction, and thermodynamics performance prediction.pdf - Published Version Available under License Creative Commons Attribution. Download (9MB) | Preview |
Abstract
The molecular dynamics (MD) simulation method is proved as an efficient tool to explore the intermolecular interaction between rejuvenators and aged bitumen, but the simple “single-molecule” model of rejuvenator would bring the inaccuracy to simulation outputs due to a huge difference with its realistic multi-component chrematistic. This study aims to in-depth analyze the chemical components of four commonly-used rejuvenators with the Gas chromatography-mass spectrometry (GC–MS) method, and propose their multi-component molecular models for the first time. Further, MD simulations are performed on the multi-component models of various rejuvenators to anticipate and compare their atomic-level properties. The GC–MS results reveal that the chemical components of petroleum-based rejuvenators are more complicated than the bio-oil (BO). The alkane, naphthenic, and aromatic molecules are the main constituents of engine-oil (EO), naphthenic-oil (NO), and aromatic-oil (AO) rejuvenators. The experimental density results validate the reliability of these multi-component molecular models of four rejuvenators. From the MD simulations outputs, there is a significant difference in the energetic indices, cohesive energy density (CED), solubility parameter δ, volumetric parameters, dynamic behaviors, structural indicators, expansion coefficient (α and β), and isobaric heat capacity (Cp) between the multi-component models of four rejuvenators. However, the multi-component molecular model of aromatic-oil based on the GC–MS method is not accurate because the polycyclic aromatic molecules with heavy-weight are not detected and considered. This study detects the difference in chemical components and thermodynamics properties between four rejuvenators and proposes their more realistic multi-component molecular models for further MD simulations on the rejuvenation of aged bitumen.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 0306 Physical Chemistry (incl. Structural); Chemical Physics |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) T Technology > TP Chemical technology |
Divisions: | Civil Engineering & Built Environment |
Publisher: | Elsevier |
SWORD Depositor: | A Symplectic |
Date Deposited: | 24 May 2023 11:52 |
Last Modified: | 24 May 2023 12:00 |
DOI or ID number: | 10.1016/j.molliq.2022.119463 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/19573 |
View Item |