Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Reality Mining with Mobile Data: Understanding the Impact of Network Structure on Propagation Dynamics

Lee, GM (2015) Reality Mining with Mobile Data: Understanding the Impact of Network Structure on Propagation Dynamics. In: Lectures Notes in Computer Science , 9531. pp. 442-461. (The 15th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP 2015), 18th - 20th November 2015, Zhangjiajie, China).

[img]
Preview
Text
paper199.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Recent studies have increasingly turned to graph theory to model Realistic Contact Networks (RCNs) for characterizing propagation dynamics. Several of these studies have demonstrated that RCNs are best described as having exponential degree distributions. In this article, based on the mobile data gathered from in-vehicle wireless devices, we show that RCNs do not always have exponential degree distributions, especially in dynamic environments. On this basis, a model is designed to recognize the structure of networks. Based on the model, we investigate the impacts of network structure on disease dynamics that is an important empirical study to the propagation dynamics. The time varying infected number R is the important parameter that is used to quantify the disease dynamics. In this study, the prediction accuracy for R is improved by utilizing realistic structural knowledge mined by our recognition model.

Item Type: Conference or Workshop Item (Paper)
Additional Information: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-27140-8_31
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions: Computer Science & Mathematics
Publisher: SPRINGER
Date Deposited: 25 Sep 2015 12:41
Last Modified: 13 Apr 2022 15:13
URI: https://researchonline.ljmu.ac.uk/id/eprint/2070
View Item View Item