Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The impact of image and performance enhancing drugs on atrial structure and function in resistance trained individuals

Place, F, Carpenter, H, Morrison, BN, Chester, N, Cooper, R, Stansfield, BN, George, KP and Oxborough, D (2023) The impact of image and performance enhancing drugs on atrial structure and function in resistance trained individuals. Echo Research and Practice, 10 (1). pp. 1-12. ISSN 2055-0464

[img]
Preview
Text
The impact of image and performance enhancing drugs on atrial structure and function in resistance trained individuals.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Background: Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear. Methods: Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity. Results: Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07). Conclusion: Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.

Item Type: Article
Uncontrolled Keywords: Echocardiography; Performance-enhancing drugs; Resistance training; Speckle tracking; Strain
Subjects: R Medicine > RC Internal medicine > RC1200 Sports Medicine
Divisions: Research & Innovation Services
Sport & Exercise Sciences
Publisher: Bio Scientifica
SWORD Depositor: A Symplectic
Date Deposited: 22 Feb 2024 09:20
Last Modified: 22 Feb 2024 09:30
DOI or ID number: 10.1186/s44156-023-00031-y
URI: https://researchonline.ljmu.ac.uk/id/eprint/22669
View Item View Item