Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

A Study of the Corrosion Resistance of 316L Stainless Steel Manufactured by Powder Bed Laser Additive Manufacturing

Ahuir Torres, JI, Burgess, A, Sharp, MC, Opoz, T, Malkeson, SP, Falkingham, PL, Darlington, RI and Tammas-Williams, S (2024) A Study of the Corrosion Resistance of 316L Stainless Steel Manufactured by Powder Bed Laser Additive Manufacturing. Applied Sciences, 14 (17).

[img]
Preview
Text
A Study of the Corrosion Resistance of 316L Stainless Steel.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

Commercially available 316L (1.4404) stainless steel is commonly used for industrial filtration due to its combination of good material properties, particularly its corrosion resistance, which is a critical factor for filters in corrosive (e.g., saltwater) environments. Recently, laser powder bed fusion (LPBF) has enabled new more complex and efficient filtration pieces to be manufactured from this material. However, it is critical to know how the corrosion resistance is affected by this manufacturing strategy. Here, the corrosion resistance of LPBF manufactured 316L stainless steel is compared with wrought 316L sheet. The corrosion of the samples in saltwater was assessed with asymmetric electrochemical noise, potentiodynamic polarisation curve, and electrochemical impedance spectroscopy. The samples before and after corrosion were examined with scanning electron microscopy and energy-dispersive spectroscopy. The LPBF samples had higher corrosion resistance than the sheet samples and were more noble. The corrosion resistance of the LPBF sample increased with time, while the wrought sample corrosion resistance reduced over time. The corrosion mechanism of both samples was stable with time, formed of a passive film process and a bared material process. This paper presents the first study about the temporal evolution of the LPBF 316L stainless steel corrosion mechanism.

Item Type: Article
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Biological & Environmental Sciences (from Sep 19)
Civil Engineering & Built Environment
Publisher: MDPI
SWORD Depositor: A Symplectic
Date Deposited: 30 Aug 2024 10:36
Last Modified: 30 Aug 2024 10:45
DOI or ID number: 10.3390/app14177471
URI: https://researchonline.ljmu.ac.uk/id/eprint/24038
View Item View Item