Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

nIFTy galaxy cluster simulations II: radiative models

Sembolini, F, Elahi, PJ, Pearce, FR, Power, C, Knebe, A, Kay, ST, Cui, W, Yepes, G, Beck, AM, Borgani, S, Cunnama, D, Davé, R, February, S, Huang, S, Katz, N, McCarthy, IG, Murante, G, Newton, RDA, Perret, V, Saro, A , Schaye, J and Teyssier, R (2016) nIFTy galaxy cluster simulations II: radiative models. Monthly Notices of the Royal Astronomical Society, 459 (3). pp. 2973-2991. ISSN 0035-8711

[img]
Preview
Text
1511.03731v1.pdf - Accepted Version

Download (8MB) | Preview

Abstract

We have simulated the formation of a massive galaxy cluster (M$_{200}^{\rm crit}$ = 1.1$\times$10$^{15}h^{-1}M_{\odot}$) in a $\Lambda$CDM universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modeling hydrodynamics with full radiative subgrid physics. These codes include Smoothed-Particle Hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modeled with different radiative physical implementations - such as cooling, star formation and AGN feedback. We compare images of the cluster at $z=0$, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al. (2015): radiative physics + classic SPH can produce entropy cores. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content- for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.

Item Type: Article
Additional Information: This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record nIFTy galaxy cluster simulations II: radiative models is available online at: http://dx.doi.org/10.1093/mnras/stw800
Uncontrolled Keywords: astro-ph.CO; astro-ph.CO; astro-ph.GA
Subjects: Q Science > QB Astronomy
Divisions: Astrophysics Research Institute
Publisher: Oxford University Press
Related URLs:
Date Deposited: 06 Jan 2016 13:15
Last Modified: 02 Aug 2022 14:25
URI: https://researchonline.ljmu.ac.uk/id/eprint/2522
View Item View Item