The BTSbot-nearby Discovery of SN 2024jlf: Rapid, Autonomous Follow-up Probes Interaction in an 18.5 Mpc Type IIP Supernova

Rehemtulla, N, Jacobson-Galán, WV, Singh, A, Miller, AA, Kilpatrick, CD, Hinds, K-R, Liu 刘, C畅, Schulze, S, Sollerman, J, Jegou du Laz, T, Ahumada, T, Auchettl, K, Brennan, SJ, Coughlin, MW, Fremling, C, Gangopadhyay, A, Perley, DA, Prusinski, NZ, Purdum, J, Qin, Y-J et al (2025) The BTSbot-nearby Discovery of SN 2024jlf: Rapid, Autonomous Follow-up Probes Interaction in an 18.5 Mpc Type IIP Supernova. The Astrophysical Journal, 985 (2). ISSN 0004-637X

[thumbnail of Rapid, Autonomous Follow-up Probes Interaction in an 18.5 Mpc Type IIP Supernova.pdf]
Preview
Text
Rapid, Autonomous Follow-up Probes Interaction in an 18.5 Mpc Type IIP Supernova.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview

Abstract

We present observations of the Type IIP supernova (SN) SN 2024jlf, including spectroscopy beginning just 0.7 days (∼17 hr) after first light. Rapid follow-up was enabled by the new BTSbot-nearby program, which involves autonomously triggering target-of-opportunity requests for new transients in Zwicky Transient Facility data that are coincident with nearby (D < 60 Mpc) galaxies and identified by the BTSbot machine learning model. Early photometry and nondetections shortly prior to first light show that SN 2024jlf initially brightened by >4 mag day−1, quicker than ∼90% of Type II SNe. Early spectra reveal weak flash ionization features: narrow, short-lived (1.3 < τ[days] < 1.8) emission lines of Hα, He ii, and C iv. Assuming a wind velocity of vw = 50 km s−1, these properties indicate that the red supergiant progenitor exhibited enhanced mass loss in the last year before explosion. We constrain the mass-loss rate to 10 yr 10 4 1 3 by matching observations to model grids from two independent radiative hydrodynamics codes. BTSbot-nearby automation minimizes spectroscopic follow-up latency, enabling the observation of ephemeral early-time phenomena exhibited by transients.

Item Type: Article
Uncontrolled Keywords: 5101 Astronomical Sciences; 51 Physical Sciences; 0201 Astronomical and Space Sciences; 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics; 0306 Physical Chemistry (incl. Structural); Astronomy & Astrophysics; 5101 Astronomical sciences; 5107 Particle and high energy physics; 5109 Space sciences
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: American Astronomical Society
Date of acceptance: 20 April 2025
Date of first compliant Open Access: 3 June 2025
Date Deposited: 03 Jun 2025 14:23
Last Modified: 03 Jun 2025 14:45
DOI or ID number: 10.3847/1538-4357/adcf1e
URI: https://researchonline.ljmu.ac.uk/id/eprint/26506
View Item View Item