Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Incomplete contingency tables with censored cells with application to estimating the number of people who inject drugs in Scotland

Overstall, AM, King, R, Bird, SM, Hutchinson, SJ and Hay, G (2014) Incomplete contingency tables with censored cells with application to estimating the number of people who inject drugs in Scotland. STATISTICS IN MEDICINE, 33 (9). ISSN 0277-6715

[img]
Preview
Text
Incomplete contingency tables with censored cells with application to estimating the number of people who inject drugs in Scotland.pdf - Published Version
Available under License Creative Commons Attribution.

Download (265kB) | Preview

Abstract

Estimating the size of hidden or difficult to reach populations is often of interest for economic, sociological or public health reasons. In order to estimate such populations, administrative data lists are often collated to form multi-list cross-counts and displayed in the form of an incomplete contingency table. Log-linear models are typically fitted to such data to obtain an estimate of the total population size by estimating the number of individuals not observed by any of the data-sources. This approach has been taken to estimate the current number of people who inject drugs (PWID) in Scotland, with the Hepatitis C virus diagnosis database used as one of the data-sources to identify PWID. However, the Hepatitis C virus diagnosis data-source does not distinguish between current and former PWID, which, if ignored, will lead to overestimation of the total population size of current PWID. We extend the standard model-fitting approach to allow for a data-source, which contains a mixture of target and non-target individuals (i.e. in this case, current and former PWID). We apply the proposed approach to data for PWID in Scotland in 2003, 2006 and 2009 and compare with the results from standard log-linear models.

Item Type: Article
Uncontrolled Keywords: 0104 Statistics, 1117 Public Health And Health Services
Subjects: H Social Sciences > HA Statistics
R Medicine > RA Public aspects of medicine
Divisions: Public Health Institute
Publisher: WILEY-BLACKWELL
Related URLs:
Date Deposited: 22 Apr 2016 08:13
Last Modified: 17 May 2022 09:50
DOI or ID number: 10.1002/sim.6047
URI: https://researchonline.ljmu.ac.uk/id/eprint/3506
View Item View Item