Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes

Dick, JJ, Tetzlaff, D and Soulsby, C (2017) Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes. Hydrology Research. ISSN 0029-1277

[img]
Preview
Text
Role of riparian wetlands stream thermal_accepted.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Stream temperature is a fundamental physical characteristic of rivers, influencing biological productivity and water quality. Given the implications of climate warming for stream thermal regimes, it is an important consideration in river management plans. Energy exchanges at the water–air interface, channel geomorphology, riparian vegetation and advective heat transport from the different sources of discharge can all influence stream temperature. A simple mixing equation was used to investigate heat transport and to estimate daily mean and maximum stream temperatures on the basis of mixing groundwater and near-surface flows from riparian wetlands as end-members in a peatland catchment. The resulting data were evaluated against energy balance components and saturation extent to investigate the importance of riparian wetlands in determining stream temperatures. Data fit was generally good in periods with extensive saturation; and poorest in dry periods with less hydrological connectivity, when reduced saturation and low flows increased the relative influence of energy exchange at the stream–atmosphere interface. These findings have implications in terms of climate change and land management, where the planting of riparian buffer strips to moderate water temperatures may be less effective when saturation area is extensive and hydrological connectivity is high.

Item Type: Article
Additional Information: Dick, Jonathan J., Tetzlaff, Doerthe. & Soulsby, Chris. Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes. Hydrology Research, https://doi.org/10.2166/nh.2017.066
Uncontrolled Keywords: 0905 Civil Engineering
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
Divisions: Natural Sciences & Psychology (closed 31 Aug 19)
Publisher: IWA Publishing
Date Deposited: 12 Dec 2017 10:58
Last Modified: 04 Sep 2021 03:30
DOI or ID number: 10.2166/nh.2017.066
URI: https://researchonline.ljmu.ac.uk/id/eprint/7703
View Item View Item