Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

The Gaia-ESO Survey: the inner disk intermediate-age open cluster NGC 6802

Tang, B, Geisler, D, Friel, E, Villanova, S, Smiljanic, R, Casey, AR, Randich, S, Magrini, L, Roman, IS, Muñoz, C, Cohen, RE, Mauro, F, Bragaglia, A, Donati, P, Tautvaišienė, G, Drazdauskas, A, Ženovienė, R, Snaith, O, Sousa, S, Adibekyan, V , Costado, MT, Blanco-Cuaresma, S, Jiménez-Esteban, F, Carraro, G, Zwitter, T, François, P, Jofrè, P, Sordo, R, Gilmore, G, Flaccomio, E, Koposov, S, Korn, AJ, Lanzafame, AC, Pancino, E, Bayo, A, Damiani, F, Franciosini, E, Hourihane, A, Lardo, C, Lewis, J, Monaco, L, Morbidelli, L, Prisinzano, L, Sacco, G, Worley, CC and Zaggia, S (2017) The Gaia-ESO Survey: the inner disk intermediate-age open cluster NGC 6802. Astronomy and Astrophysics, 601. ISSN 0004-6361

[img]
Preview
Text
The Gaia-ESO Survey the inner disk intermediate-age open cluster NGC 6802.pdf - Published Version

Download (2MB) | Preview

Abstract

Milky Way open clusters are very diverse in terms of age, chemical composition, and kinematic properties. Intermediate-age and old open clusters are less common, and it is even harder to find them inside the solar Galactocentric radius, due to the high mortality rate and strong extinction inside this region. NGC 6802 is one of the inner disk open clusters (IOCs) observed by the $Gaia$-ESO survey (GES). This cluster is an important target for calibrating the abundances derived in the survey due to the kinematic and chemical homogeneity of the members in open clusters. Using the measurements from $Gaia$-ESO internal data release 4 (iDR4), we identify 95 main-sequence dwarfs as cluster members from the GIRAFFE target list, and eight giants as cluster members from the UVES target list. The dwarf cluster members have a median radial velocity of $13.6\pm1.9$ km s$^{-1}$, while the giant cluster members have a median radial velocity of $12.0\pm0.9$ km s$^{-1}$ and a median [Fe/H] of $0.10\pm0.02$ dex. The color-magnitude diagram of these cluster members suggests an age of $0.9\pm0.1$ Gyr, with $(m-M)_0=11.4$ and $E(B-V)=0.86$. We perform the first detailed chemical abundance analysis of NGC 6802, including 27 elemental species. To gain a more general picture about IOCs, the measurements of NGC 6802 are compared with those of other IOCs previously studied by GES, that is, NGC 4815, Trumpler 20, NGC 6705, and Berkeley 81. NGC 6802 shows similar C, N, Na, and Al abundances as other IOCs. These elements are compared with nucleosynthetic models as a function of cluster turn-off mass. The $\alpha$, iron-peak, and neutron-capture elements are also explored in a self-consistent way.

Item Type: Article
Uncontrolled Keywords: astro-ph.GA; astro-ph.GA; astro-ph.SR
Subjects: Q Science > QB Astronomy
Q Science > QC Physics
Divisions: Astrophysics Research Institute
Publisher: EDP Sciences
Related URLs:
Date Deposited: 17 Feb 2017 09:33
Last Modified: 04 Sep 2021 11:56
DOI or ID number: 10.1051/0004-6361/201629883
URI: https://researchonline.ljmu.ac.uk/id/eprint/5550
View Item View Item