Facial reconstruction

Search LJMU Research Online

Browse Repository | Browse E-Theses

Introduction to the Evaluation and Classification of Biomarkers using Direct to Consumer Genetic Data

Curbelo Montañez, A and Fergus, P and Hussain, A and Al-Jumeily, D Introduction to the Evaluation and Classification of Biomarkers using Direct to Consumer Genetic Data. In: Lecture Notes in Computer Science . (2017 International Conference on Intelligent Computing, 07 August 2017 - 10 August 2017, Liverpool, UK). (Accepted)

[img] Text
AdaysPaper_ICIC_2017.pdf - Accepted Version

Download (552kB)


Today, Direct-to-Consumer genetic testing services are becoming more ubiquitous. Consumers of such services are sharing their genetic and clinical information with the research community to facilitate the extraction of knowledge about different conditions. In this paper, we build on these services to analyse the genetic data of people with different BMI levels to determine the immediate and long-term risk factors associated with obesity. Using web scraping techniques, a dataset containing publicly available information about 230 participants from the Personal Genome Project is created. Subsequent analysis of the dataset is conducted for the identification of genetic variants associated with high BMI levels via standard quality control and association analysis protocols for Genome Wide Association Analysis. Finally, we applied a combination of Recursive Feature Elimination feature selection and Support Vector Machine with Radial Basis Function Kernel learning method to the filtered dataset. Using a robust data science methodology our approach provides the identification of obesity related genetic variants, to be used as features when predicting individual obesity susceptibility. The results reveal that the subset of features obtained through Recursive Feature Elimination does not improve the performance of the classifier when compared to the totality of genetic variants identified in logistic regression.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: 08 Information And Computing Sciences
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
R Medicine > R Medicine (General)
Divisions: Computer Science
Publisher: Springer Verlag (Germany)
Date Deposited: 05 May 2017 10:43
Last Modified: 05 May 2017 10:43
URI: http://researchonline.ljmu.ac.uk/id/eprint/6365

Actions (login required)

View Item View Item