Bellfield, RAA, Olier, I, Lotto, R, Jones, ID, Dawson, EA, Li, G, Tuladhar, AM, Lip, GYH and Ortega-Martorell, S (2024) AI-based derivation of atrial fibrillation phenotypes in the general and critical care populations. eBioMedicine, 107. ISSN 2352-3964
|
Text
AI-based derivation of atrial fibrillation phenotypes in the general and critial care populations.pdf - Published Version Available under License Creative Commons Attribution. Download (4MB) | Preview |
Abstract
Background Atrial fibrillation (AF) is the most common heart arrhythmia worldwide and is linked to a higher risk of mortality and morbidity. To predict AF and AF-related complications, clinical risk scores are commonly employed, but their predictive accuracy is generally limited, given the inherent complexity and heterogeneity of patients with AF. By classifying different presentations of AF into coherent and manageable clinical phenotypes, the development of tailored prevention and treatment strategies can be facilitated. In this study, we propose an artificial intelligence (AI)-based methodology to derive meaningful clinical phenotypes of AF in the general and critical care populations. Methods Our approach employs generative topographic mapping, a probabilistic machine learning method, to identify micro-clusters of patients with similar characteristics. It then identifies macro-cluster regions (clinical phenotypes) in the latent space using Ward’s minimum variance method. We applied it to two large cohort databases (UK-Biobank and MIMIC-IV) representing general and critical care populations. Findings The proposed methodology showed its ability to derive meaningful clinical phenotypes of AF. Because of its probabilistic foundations, it can enhance the robustness of patient stratification. It also produced interpretable visualisation of complex high-dimensional data, enhancing understanding of the derived phenotypes and their key characteristics. Using our methodology, we identified and characterised clinical phenotypes of AF across diverse patient populations. Interpretation Our methodology is robust to noise, can uncover hidden patterns and subgroups, and can elucidate more specific patient profiles, contributing to more robust patient stratification, which could facilitate the tailoring of prevention and treatment programs specific to each phenotype. It can also be applied to other datasets to derive clinically meaningful phenotypes of other conditions.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | 1103 Clinical Sciences; 1117 Public Health and Health Services |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science R Medicine > RA Public aspects of medicine T Technology > T Technology (General) |
Divisions: | Computer Science & Mathematics Engineering Nursing & Allied Health Sport & Exercise Sciences |
Publisher: | Elsevier |
SWORD Depositor: | A Symplectic |
Date Deposited: | 20 Aug 2024 09:31 |
Last Modified: | 20 Aug 2024 09:31 |
DOI or ID number: | 10.1016/j.ebiom.2024.105280 |
URI: | https://researchonline.ljmu.ac.uk/id/eprint/23982 |
View Item |